Skip to main content
Skip table of contents

Endpoints

Dependent Demand 

Request Method: GET

URL: https://api.avercast.com/dependent_demand 

Dependent demand contains the requirements of any dependent planning records such as dependent warehouses in a hub and spoke supply structure or demand on a component in a bill of material from the parent item.

The “data” element in the response has “items” an array of dependent demand records.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "1500-101",

                "whseLocation": "ANA",

                "quantity": 144,

                "destination": "ANA",

                "dueDate": "20231022",

                "demandType": "BOM DEMAND",

                "parentSku": "3000-101-K",

                "parentLocation": "ANA",

                "dueDate2": "20231022",

                "period": 43

            },…

        ]

    }

}

Future Data 

Request Method: GET

URI: https://api.avercast.com/future_data 

The future data endpoint includes customer forecast with customerforecast1-customerforecast60 and sales forecast with pos1-pos60. It also includes future costs and prices fcost1-fcost60 and fprice1-fprice60.

Gross Requirements 

Request Method: GET

URI: https://api.avercast.com/gross_requirements 

Gross requirements in Avercast are a planning dataset representing the total demand for an item. Gross requirements for a plan period are calculated as the greater of forecast or open customer orders, plus any dependent demand. 

The “data” element in the response has “items” an array of gross requirement records.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "gr0": 166,

                "gr1": 236,

                "gr2": 332,

                "gr3": 512,

                .

                .

                .

                "gr72": 647

            },…

        ]

    }

}

Plan Orders 

Request Method: GET

URI: https://api.avercast.com/plan_orders 

This dataset contains sku, location, and an array of quantities which avercast recommends ordering to maintain an optimal inventory level. Each record contains sku, location and an array po0-po72 of quantities by plan period.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "po0": 36,

                "po1": 1800,

                "po2": 504,

                "po3": 540,

                .

                .

                .

                "po72": 504

            },…

        ]

    }

}

Planned Orders

Request Method: GET

URI: https://api.avercast.com/planned_orders 

Planned orders in Avercast are recommended orders generated by the planning system. They can be used to generate purchases, transfer, or work orders depending on the source of supply.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "planPeriod": 0,

                "supplier": "APB",

                "sku": "12781-10110",

                "whseLocation": "ANA",

                "quantity": 36,

                "orderDate": "PASTDUE ",

                "dueDate": "20230108",

                "orderType": "P",

                "adjustment": 0

            },

            {

                "planPeriod": 1,

                "supplier": "APB",

                "sku": "12781-10110",

                "whseLocation": "ANA",

                "quantity": 1800,

                "orderDate": "20230101",

                "dueDate": "20230115",

                "orderType": "P",

                "adjustment": 0

            },…

        ]

    }

}

Plan Receipts 

Request Method: GET

URI: https://api.avercast.com/plan_receipts 

This dataset contains sku, location, and an array of quantities which avercast recommends ordering to maintain an optimal inventory level. The quantities are offset from the plan_orders dataset using the item’s lead time. Each record contains sku, location and an array pr0-pr72 of quantities by plan period.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "pr0": 0,

                "pr1": 0,

                "pr2": 0,

                "pr3": 1836,

                .

                .

                .

                "pr72": 792

            },…

        ]

    }

}

Projected Inventory

Request Method: GET

URI: https://api.avercast.com/projected_inventory 

This dataset contains sku, location, and an array of quantities which avercast estimates to be the ending inventory for each future plan period. Each record contains sku, location and an array pei0-pei72 of quantities by plan period.

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "pei0": 0,

                "pei1": 0,

                "pei2": 0,

                "pei3": 1836,

                .

                .

                .

                "pei72": 792

            },…

        ]

    }

}

Replenishment Orders 

Request Method: GET 
URI: https://api.avercast.com/replenishment_orders

Replenishment orders in Avercast represent open purchase, transfer, and work orders that have not yet been received at the destination location. 

Code Snippet
JSON


{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "quantityDue": 200,

                "dueDate": "20230106",

                "orderType": "W",

                "orderNumber": "4507",

                "vendorNumber": "APB",

                "vendorName": "APB",

                "orderStatus": "1",

                "remarks": "SF100WORKORDER INPROCESS",

                "orderDate": "20230102",

                "requestDate": "20220102",

                "receivedDate": "20220106",

                "quantityOrdered": 700,

                "quantityReceived": 500,

                "quantityCancelled": 0,

                "transitDays": 1,

                "shipmentCode": null,

                "requestedBy": null,

                "orderPart": 1,

                "scheduledEfd": null,

                "cpo": null,

                "country": null,

                "lineNum": null,

                "hold": null

            },…

        ]

    }

}

Firm planned orders can be selected by including a filter parameter, e.g.

URI: https://api.avercast.com/replenishment_orders?filter=OrderStatus+eq+FPO 

Sales Orders 

Request Method: GET

URI: https://api.avercast.com/sales_orders

Sales orders in Avercast are open customer orders that have not yet shipped out of the location. 

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "quantityDue": 5,

                "dueDate": "20221124",

                "orderNumber": "20004502",

                "customerNumber": "1",

                "customerName": "0",

                "remarks": "Safeway",

                "orderStatus": "Open",

                "orderType": "R",

                "requestDate": "20211224",

                "shippedDate": "NULL    ",

                "orderDate": "20221124",

                "quantityOrdered": 0,

                "quantityShipped": 0,

                "quantityCancelled": 0,

                "locked": null,

                "hold": null

            },…

        ]

    }

}

Sales Summary 

Request Method: GET

URI: https://api.avercast.com/sales_summary 

The sales summary dataset includes monthly historical sales and forecast, cost, price, and item and location hierarchies. Because it is a large table, we have some additional query string parameters that can be used, including select, groupBy, orderBy. All indexes are anchored from the current month. Forecast1 would be current month forecast, Forecast2 next month, Sales1 the previous month of sales, etc. There is also an abbreviateNames parameter that can reduce the size of the result set by not including the full field names. Use it by setting abbreviateNames=true.

Available fields include: 

Field

Start Index

End Index

Description

SKU

Location

Supplier

BuyerPlanner

Category

1

10

SKU/Location Categories

ABC

1

5

ABC Letter Rankings

Cost

Price

Sales

1

60

Historical Sales

Forecast

1

60

User Adjusted Forecast

HistoricalForecast

1

60

Historical Forecast

ActiveCode

MethodNumber

MethodName

CalculatedForecast

1

60

System Calculated Forecast

ABCrank

ForecastVariance

FreezeForecast

mtdsales

maketoorder

FreezeABCCode

skulocid

Leaving off the select parameter will select all fields in the dataset, or it can be added to select specific fields. For example, to retrieve one year of forecast:

https://api.avercast.com/sales_summary?pageSize=100&select=sku,location,forecast1,forecast2,forecast3,forecast4,forecast5,forecast6,forecast7,forecast8,forecast9,forecast10,forecast11,forecast12

Code Snippet
JSON
{

    "data": {

        "items": [

            {

                "sku": "12781-10110",

                "location": "ANA",

                "forecast1": 1144,

                "forecast2": 876,

                "forecast3": 2273,

                "forecast4": 1168,

                "forecast5": 812,

                "forecast6": 1028,

                "forecast7": 554,

                "forecast8": 941,

                "forecast9": 1839,

                "forecast10": 4232,

                "forecast11": 3214,

                "forecast12": 957

            },…

        ]

    }

}

Weekly Summary 

Request Method: GET

URL: https://api.avercast.com/weekly_summary 

This dataset is similar to the sales_summary dataset but includes weekly totals instead of monthly if you are using weekly forecasting.

JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.